(Cсылки видны только зарегистрированным пользователям. Регистрация занимает 20 секунд - скобки откроются, вы увидите ссылку)
Большинство учебных пособий и учебников по теоретической механике включают три раздела: статику» кинематику и динамику. При такой структуре студенты знакомятся с теоретической механикой начиная с простых разделов и заканчивая более сложными, в результате динамика оказывается наименее освоенной.
Исходя из этого, авторы построили структуру данного учебного пособия так, что оно начинается с векторной динамики точки, системы, изложенной достаточно сжато. Центрами первого раздела являются уравнения Ньютона и получаемые на их базе основные теоремы динамики. Здесь же приводятся и дифференциальные вариационные принципы. Этот материал занимает первые три главы. В гл. 4 к основному уравнению динамики, которое представляет собой комбинацию силовых, кинематических и инерционных характеристик, применен метод декомпозиции. Это позволяет рассматривать динамику механических систем как композицию трех геометрий: геометрии сил (статики), геометрии масс, геометрии движений (кинематики).
Второй раздел содержит традиционное изложение геометрической статики, рассматриваемой как частный случай обратной задачи динамики. Считается, что задано движение с нулевой скоростью (покой), и требуется найти силы, под действием которых это состояние системы реализуется в течение некоторого интервала времени. Здесь же определяются параметры геометрии масс: центр тяжести, центр масс, моменты инерции и центробежные моменты.
Третий раздел посвящен изучению наиболее общих параметров траекторий точки, систем материальных точек, твердого тела — геометрии движений (кинематики), которые имеют место для произвольных систем сил.
Материал 4-10 глав дает детальное описание геометрии векторов, называемых в механике силами, гл. 11-15 — геометрии скоростей и ускорений. Этот подход реализует принцип обучения от общего к частностям и, по мнению авторов, создает в представлении студентов правильную иерархию разделов теоретической механики. Таким образом, векторная механика Ньютона излагается достаточно традиционно, порядок сле¬дования разделов также не является чем-то новым.
Четвертый раздел учебного пособия посвящен аналитической механике Лагранжа — Гамильтона и содержит материал, традиционный для учебников по теоретической механике, включая интегральные вариационные принципы.
В пятый раздел выделены темы, связанные с динамикой твердого тела и имеющие непосредственное прикладное значение.
Шестой раздел не является традиционным для русскоязычных учебников по теоретической механике. Однако проблемы применения нелинейных моделей в различных областях науки, техники и технологии требуют знания методов исследования нелинейных систем. Например, некоторые асимптотические методы позволяют с достаточной эффективностью приближенно решать многие интересные задачи для нелинейных дифференциальных уравнений. В последние десятилетия активно развивались методы качественного исследования нелинейных динамических систем, позволившие описать явления возникновения детерминированного хаоса и самоорганизации. В данном пособии излагаются некоторые результаты таких исследований, надежность которых достаточно хорошо подтверждена во многих публикациях разных авторов.
2.2.
Раздел I. Векторная механика Ньютона
1. Аксиомы Ньютона и основные задачи механики .... 16
2. Векторная динамика точки
и системы материальных точек ............................20
2.1. Основные законы динамики точки и системы материальных точек в инерциальных системах отсчета ..................20
Решение типовых задач ................................ 30
Основные законы динамики
в неинерциальных системах отсчета .............. 39
Принцип Даламбера для материальной точки
и для системы материальных точек ...............42
3. Вариационные дифференциальные принципы механики ........................................................... 48
3.1. Действительные, возможные
и виртуальные перемещения .........................48
3.2. Общее уравнение динамики
(принцип Даламбера — Лагранжа) ................. 50
3.3. Вариационные дифференциальные принципы: Журдена, Гаусса, возможных перемещений _ 52
3.4. Основные уравнения динамики
для систем материальных точек со связями .... 55
Раздел II. Геометрическая статика
4. Геометрия сил .................................................... 60
4.1. Основные понятия геометрии сил .................. 60
4.2. Аксиомы геометрии сил.
Теорема о трех параллельных силах •..............62
4.3. Активные и пассивные силы. Виды связей ..... 64
4.4. Проекции силы на оси декартовых координат и на плоскость. Аналитический способ сложения сил .............................................. 68
4.5. Система сходящихся сил ............................... 71
5. Теория пар ......................................................... 77
5.1. Сложение двух параллельных сил. Пара сил .... 77
5.2. Момент силы относительно точки. Теорема Вариньона для системы сходящихся сил ........ 79
5.3. Момент силы относительно оси ...................... 82
5.4. Момент пары сил. Теоремы о парах ............... 84
6. Условия равновесия пространственной
и плоской систем сил .......................................... 89
6.1. Лемма о параллельном переносе силы ............ 89
6.2. Основная теорема статики ............................. 91
6.3. Аналитическое определение главного вектора и главного момента пространственной системы сил ...................... 93
6.4. Условия равновесия пространственной системы сил и системы параллельных сил ...... 95
6.5. Приведение плоской системы сил
к простейшему виду ..................................... 98
6.6. Условия равновесия плоской системы сил ..... 102
6.7. Понятие о статически неопределимых
задачах ..................................................... 103
6.8. Распределенные силы ................................. 104
6.9. Статические инварианты. Динамический
винт .......................................................... 107
6.10. Центральная ось.
Уравнение центральной оси ......................... 108
6.11. Частные случаи приведения пространственной системы сил .................... 109
7. Расчет равновесия системы тел и ферм ............... 112
7.1. Равновесие системы тел .............................. 112
7.2. Аналитический расчет плоских ферм ........... 114
8. Трение ............................................................. 118
8.1. Равновесие с учетом трения......................... 118
8.2. Угол и конус трения ................................... 119
8.3. Трение нити о цилиндрическую
поверхность ............................................... 122
8.4. Равновесие тела при наличии трения
качения ..................................................... 124
9. Центр тяжести .................................................. 128
9.1. Центр параллельных сил ............................. 128
9.2. Формулы координат центра тяжести
твердого тела ............................................. 129
9.3. Формулы координат центра тяжести объема, площади и линии ....................................... 130
9.4. Методы определения центра тяжести некоторых фигур ........................................ 134
10. Геометрия масс в системах материальных точек
и твердых телах ................................................ 138
10.1. Центр масс (центр инерции) системы материальных точек и твердого тела .......... 138
10.2. Моменты инерции, центробежные моменты ... 140
Раздел III. Геометрия движений — кинематика
11. Кинематика точки ............................................ 146
11.1. Основные понятия .................................... 146
11.2. Способы задания движения........................ 146
11.3. Производная вектор-функции
по скалярному аргументу .......................... 150
11.4. Скорость точки при векторном, координатном, естественном
способах задания движения ....................... 151
11.5. Ускорение точки при векторном, координатном, естественном
способах задания движения ....................... 153
11.6. Задание движения точки
в криволинейных координатах ................... 160
12. Кинематика абсолютно твердого тела .................. 168
12.1. Поступательное движение твердого тела ..... 168
12.2. Вращение твердого тела вокруг неподвижной оси ...................................... 169
12.3. Скорости и ускорения точек вращающегося твердого тела ..................... 171
12.4. Плоскопараллельное движение твердого
тела ......................................................... 174
12.5. Мгновенный центр скоростей ..................... 176
12.6. Подвижная и неподвижная центроиды ....... 179
12.7. Определение ускорений точек тела
при плоскопараллельном движении ............ 181
12.8. Мгновенный центр ускорений .................... 183
13. Движение твердого тела вокруг неподвижной
точки и движение свободного твердого тела......... 186
13.1. Движение твердого тела, имеющего одну неподвижную точку .................................. 186
13.2. Скорости и ускорения точек тела ............... 187
13.3. Движение свободного твердого тела ............ 190
14. Сложное движение точки ................................... 192
14.1. Относительное, переносное и абсолютное движения ................................................. 192
14.2. Скорость и ускорение точки в сложном движении ................................................. 193
15. Сложное движение твердого тела........................ 202
15.1. Сложение поступательных движений .......... 202
15.2. Сложение вращений вокруг пересекающихся осей ................................ 203
15.3. Кинематические уравнения Эйлера ............. 205
15.4. Пара вращений ......................................... 210
15.5. Сложение вращений вокруг параллельных
осей ......................................................... 210
15.6. Сложение поступательных и вращательных движений ................................................. 212
Раздел IV. Механика Лагранжа — Гамильтона
16. Аналитическая механика систем материальных
точек ............................................................... 216
16.1. Связи, классификации, число степеней
свободы. Обобщенные координаты,
скорости .................................................. 216
•16.2. Уравнения Лагранжа второго рода ............. 217
16.3. Закон изменения полной механической энергии голономной системы
для непотенциальных сил .......................... 221
16.4. Канонические уравнения Гамильтона .........225
17. Вариационные интегральные принципы классической механики ..................................... 227
17.1. Дифференцирование и варьирование
в механике ............................................... 227
17.2. Вариационный принцип
Гамильтона — Остроградского .................... 230
17.3. Вывод уравнения Лагранжа второго рода
из принципа Гамильтона — Остроградского ... 233
17.4. Вывод канонических уравнений механики
из принципа Гамильтона — Остроградского ... 234
17.5. Принцип стационарного действия
Мопертюи — Лагранжа .............................. 235
Раздел У. Применение основных законов и принципов теоретической механики
18. Динамика твердого тела .................................... 238
18.1. Понятие абсолютно твердого тела ............... 238
18.2. Движение твердого тела вокруг закрепленной точки .................................. 242
18.3. Гироскоп .................................................. 246
18.4. Движение твердого тела ............................ 250
18.5. Ударное взаимодействие твердых тел .......... 257
18.6. Применение основных законов механики удара ....................................................... 263
18.7. Колебательные движения точки, системы точек, твердого тела .................................. 270
19. Линейные колебания ......................................... 276
19.1. Свободные незатухающие колебания ........... 276
19.2. Свободные затухающие колебания .............. 278
19.3. Вынужденные колебания осциллятора
без затухания. Резонанс, биение.................280
19.4. Вынужденные затухающие колебания ........ 284
Раздел VI. Элементы нелинейной динамики
20. Нелинейные колебания ......................................288
20.1. Особенности нелинейных колебаний ........... 288
20.2. Свободные колебания маятника ................. 293
20.3. Консервативные (гамильтоновы) системы __298
20.4. Диссипативные системы ............................ 299
20.5. Системы с переменными параметрами (параметрические системы) ........................ 305
20.6. Затухание параметрических колебаний ....... 310
20.7. Элементы теории бифуркации ....................313
21. Исследование динамических систем методом сечений Пуанкаре .............................................319
21.1. Определение потока ..................................319
21.2. Сечения Пуанкаре ..................................... 320
21.3. Различные типы сечений Пуанкаре ............ 323
21.4. Отображение первого возвращения ............. 327
21.5. Практическая реализация .........................332
22. Детерминированный хаос в диссипативных динамических системах .....................................336
22.1. Асимптотическое поведение диссипативной динамической системы .............................. 336
22.2. Теория Флоке ........................................... 340
23. Диссипация энергии в динамических системах, аттракторы, фракталы. Переход к хаотическому движению ........................................................ 345
23.1. Эффекты притяжения ............................... 345
23.2. Апериодические аттракторы ......................351
23.3. Измерение размерности странных аттракторов .............................................. 356
24. Устойчивость движения, показатели Ляпунова
и классификация аттракторов ............................. 364
24.1. Показатель Ляпунова ................................ 364
24.2. Анализ частных случаев ............................366
24.3. Методы определения показателей
Ляпунова ................................................. 370
24.4. Характеристики аттрактора ....................... 373
25. Синергетика и автоколебания ............................ 375
25.1. Понятие о самоорганизации динамических систем ..................................................... 375
25.2. Автоколебания......................................... 378
25.3. Маятник с отрицательным трением ............ 381
25.4. Осциллятор Ван-дер-Поля .......................... 387
25.5. Осциллятор с односторонним трением ......... 391