Поиск по всей базе задач и всему сайту |
|
Новое на форуме
|
Популярное на форуме
|
Контрольная работа по физике №3
| |
bovali | Дата: Четверг, 27.10.2011, 09:56 | Сообщение # 1 |
Admin
Группа: Администраторы
Сообщений: 908
Статус: Offline
| Контрольная работа 3.
301. Точечные заряды Q1 = 20 мкКл, Q2=-10 мкКл находятся на расстоянии d=5 см друг от друга. Определить напряженность поля в точке, удаленной на r1=3 см от первого и r2=4 см от вто¬рого заряда. Определить также силу F, действующую в этой точке на точечный заряд Q=l мкКл. 302. Три одинаковых точечных заряда Q1=Q2=Q3=2 нКл на¬ходятся в вершинах равностороннего треугольника со стороной а=10 см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других. 303. Два положительных точечных заряда Q и 9Q закреплены на расстоянии l=100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устой¬чивым, если перемещения заряда возможны только вдоль прямой, проходящей через закрепленные заряды. 304. Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол ά. Шарики погружаются в масло. Какова плотность р0 масли, если угол расхождения нитей при погружении шариков в масло ос¬тается неизменным? Плотность материала шариков р=1,5*103кг/м3, диэлектрическая проницаемость масла ε = 2,2. 305. Четыре одинаковых Q1=Q2=Q3=Q4=40 нКл за¬креплены в вершинах квадрата со стороной а = 10 см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных. 306. В вершинах квадрата находятся одинаковые заряды Q1=Q2=Q3=Q4==8*10-10 Кл. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда? 307. На расстоянии d=20 см находятся два точечных заряда Q1=-50 нКл и Q2=100 нКл. Определить силу F, действующую на заряд Q3=—10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d. 308. Расстояние d между двумя точечными зарядами Q1=2 нКл и Q2=4 нКл равно 60 см. Определить точку, в которую нужно поместить третий заряд Qз так, чтобы система зарядов на¬ходилась в равновесии. Определить размер и знак заряда. Устой¬чивое или неустойчивое будет равновесие? 309. На тонком кольце равномерно распределен заряд с ли¬нейной плотностью заряда τ=0,2 кНл/см. Радиус кольца R=15 см. На срединном перпендикуляре к плоскости кольца находится точеч¬ный заряд Q=10 нКл. Определить силу F, действующую на точеч¬ный заряд со стороны заряженного кольца, если он удален от центра кольца на: 1) a1=20 см; 2) a2=10 м. 310. По тонкой нити, изогнутой по дуге окружности радиусом R=10 см, равномерно распределен заряд Q=20 нКл. Определить напряженность Е поля, создаваемого этим зарядом в точке, совпа¬дающей с центром кривизны дуги, если длина нити равна четверти длины окружности. 311. Определить напряженность Е поля, создаваемого зарядом, равномерно распределенным по тонкому прямому стержню с линей¬ной плотностью заряда τ=200 нКл/м, в точке, лежащей на продол¬жении оси стержня на расстоянии а=20 см от ближайшего конца. Длина стержня l=40 см. 312. На продолжении оси тонкого прямого стержня, равномер¬но заряженного с линейной плотностью заряда τ=15 нКл/см, на расстоянии a=40 см от конца стержня находится точечный заряд Q=10 мкКл. Второй конец стержня уходит в бесконечность. Определить силу взаимодействия стержня и заряда Q. 313. По тонкому кольцу радиусом R =10 см равномерно рас¬пределен заряд Q1=20 нКл. Какова напряженность Е поля в точ¬ке, находящейся на оси кольца на расстоянии а=20 см от центра кольца? 314. Два длинных, тонких равномерно заряженных (τ = 1 мкКл/м) стержня расположены перпендикулярно друг другу так, что точка пересечения их осей находится на расстоянии а = 10 см и b=15 см от ближайших концов стержней. Найти силу F, действующую на заряд Q=10 нКл, помещенный в точку пересе¬чения осей стержней. 315. Тонкое полукольцо радиусом R=20 см несет равномерно распределенный заряд Q1=2 мкКл. Определить силу F, действую¬щую на точечный заряд Q2 = 40 нКл, расположенный в центре кри¬визны полукольца. 316. Определить напряженность Е поля, создаваемого тонким длинным стержнем, равномерно заряженным с линейной плотностью заряда τ =20 мкКл/м в точке, находящейся на расстоянии а=2 см от стержня, вблизи его середины. 317. Параллельно бесконечной плоскости, заряженной с поверх¬ностной плотностью заряда σ = 4 мкКл/м2, расположена бесконечно длинная прямая нить, заряженная с линейной плотностью заряда τ = 100 нКл/м. Определить силу F, действующую со стороны плос¬кости на отрезок нити длиной 1=1 м. 318. Две одинаковые круглые пластины площадью S = 400 см2 каждая расположены параллельно друг другу. Заряд одной пласти¬ны Q1=400 нКл, другой Q2=—200 нКл. Определить силу F взаим¬ного притяжения пластин, если расстояние между ними: а) r1 =3 мм; б) r2=10 м. 319. На бесконечном - тонкостенном цилиндре диаметром d= 20 см равномерно распределен заряд с поверхностной плотностью σ =4 мкК.л/м2. Определить напряженность поля в точке, отстоящей от поверхности цилиндра на а=15 см. 320. С какой силой (на единицу площади) взаимодействуют две бесконечные параллельные плоскости, заряженные с одинако¬вой поверхностной плотностью заряда σ = 5 мкКл/м2? 321. Две длинные прямые параллельные нити находятся на рас¬стоянии d=5 см друг от друга. На нитях равномерно распределены заряды с линейными плотностями заряда τ1=—5 нКл/см и τ2=10 нКл/см. Определить напряженность Е электрического поля в точке, удаленной от первой нити на расстояние r1=3 см и от вто¬рой на расстояние г2=4 см. 322. К бесконечной равномерно заряженной вертикальной пло¬скости подвешен на нити одноименно заряженный шарик массой m = 50 мг и зарядом Q=0,6 нКл. Сила натяжения нити, на которой висит шарик, F=0,7 мН. Найти поверхностную плотность заряда σ на плоскости. 323. С какой силой (на единицу длины) взаимодействуют две заряженные бесконечно длинные параллельные нити с одинаковой линейной плотностью заряда τ =20 мкКл/м, находящиеся на рас¬стоянии г =10 см друг от друга? 324. Поверхностная плотность заряда а бесконечно протяжен¬ной вертикальной плоскости равна 400 мкКл/м2. К плоскости на ни¬ти подвешен заряженный шарик массой m=10 г. Определить за¬ряд Q шарика, если нить образует с плоскостью угол φ=30°. 325. Определить потенциальную энергию W системы двух точечных зарядов Q1=400 нКл и Q2=20 нКл, находящихся на рас¬стоянии г=5 см друг от друга. 326. Две параллельные заряженные плоскости, поверхностные плотности заряда которых σ1=2 мкКл/м2 и σ2= -0,8 мкКл/м2, находятся на расстоянии d = 0,6 см друг от друга. Определить раз¬ность потенциалов U между плоскостями. 327. Поле образовано бесконечной равномерно заряженной пло¬скостью с поверхностной плотностью заряда σ=40 нКл/м2, Определить разность потенциалов U двух точек поля, отстоящих от плоскости на r1=15 см и r2=20 см. 328. Четыре одинаковых капли ртути, заряженных до потенциа¬ла φ = 10 В, сливаются в одну, Каков потенциал φ1 образовавшейся капли? 329. Тонкий стержень согнут в кольцо радиусом R = 10 см. Он равномерно заряжен с линейной плотностью заряда τ =800 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h=10 см от его центра. 330. Поле образовано точечным диполем с электрическим моментом р = 200 пКл-м. Определить разность потенциалов U двух точек поля, расположенных симметрично относительно диполя на его оси на расстоянии г =40 см от центра диполя. 331. Электрическое поле образовано бесконечно длинной заря¬женной нитью, линейная плотность заряда которой τ =20 пКл/м. Определить разность потенциалов U двух точек поля, отстоящих от нити на расстоянии r1 = 8 см и г2=12 см. 332. Тонкая квадратная рамка равномерно заряжена с линей¬ной плотностью заряда τ =200 пКл/м. Определить потенциал φ поля в точке пересечения диагоналей. 333. Пылинка массой m=200 мкг, несущая на себе заряд Q=40 нКл, влетела в электрическое поле в направлении силовых ли¬ний. После прохождения разности потенциалов U = 200 В пылинка имела скорость v0= 10 м/с. Определить скорость v пылинки до того, как она влетела в поле. 334. Электрон, обладавший кинетической энергией T=10 эВ, влетел в однородное электрическое поле в направлении силовых ли¬ний поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U=8 В? 335. Найти отношение скоростей ионов Cu++ и К+, прошедших одинаковую разность потенциалов. 336. Электрон с энергией T=400 эВ (в бесконечности) движет¬ся вдоль силовой линии по направлению к поверхности металличе¬ской заряженной сферы радиусом R = 10 см. Определить минималь¬ное расстояние а, на которое приблизится электрон к поверхности сферы, если заряд ее Q=—10 нКл. 337. Электрон, пройдя в плоском конденсаторе путь от .одной пластины до другой, приобрел скорость v =103 м/с. Расстояние меж¬ду пластинами d=8 мм. Найти: 1) разность потенциалов U между пластинами; 2) поверхностную плотность заряда σ на пластинах. 338. Пылинка массой m=5 нг, несущая на себе N=10 электро¬нов, прошла в вакууме ускоряющую разность потенциалов U=1 мВ. Какова кинетическая энергия Т пылинки? Какую скорость v приоб¬рела пылинка? 339. Ион атома лития Li+ прошел разность потенциалов U1= 400 В, ион атома натрия Na+ — разность потенциалов U2 =300 В. Найти отношение скоростей этих ионов. 340. При бомбардировке неподвижного ядра калия α-частицей сила отталкивания между ними достигла F=100 H. На какое наи¬меньшее расстояние приблизилась α -частица к ядру атома калия? Какую скорость v имела α -частица вдали от ядра? Влиянием элект¬ронной оболочки атома калия пренебречь. 341. Расстояние между пластинами плоского конденсатора d = 2 мм, разность потенциалов U = 600 В. Заряд каждой пластины Q=40 нКл. Определить энергию W поля конденсатора и силу F взаимного притяжения пластин. 342. Два одинаковых .плоских воздушных конденсатора ем¬костью С=100 пФ каждый соединены в батарею последовательно. Определить, насколько изменится емкость С батареи, если прост¬ранство между пластинами одного из конденсаторов заполнить па¬рафином. 343. Два конденсатора емкостью C1 = 5 мкФ и С2=8 мкФ со¬единены последовательно и присоединены к батарее с э. д. с. ε= 80 В. Определить заряды Q1 и Q2 конденсаторов и разности по¬тенциалов U1 и U2 между их обкладками. 344. Плоский конденсатор состоит из двух круглых пластин радиусом R=10 см каждая. Расстояние между пластинами d=2мм. Конденсатор присоединен к источнику напряжения U=80 В. Опре¬делить заряд Q и напряженность Е поля конденсатора в двух слу¬чаях: а) диэлектрик — воздух; б) диэлектрик — стекло. 345. Два одинаковых плоских воздушных конденсатора соеди¬нены последовательно в батарею, которая подключена к источнику тока с э. д. с. ε = 12 В. Определить, насколько изменится напряже¬ние на одном из конденсаторов, если другой погрузить в трансфор¬маторное масло. 346. Два металлических шарика радиусами R1=5 см и R2=10 см имеют заряды Q1 = 40 нКл и Q2=—20 нКл соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником. 347. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной d1=0,2 см и слоем парафина толщиной d2=0,3 см. Разность потенциалов меж¬ду обкладками U = 300 В. Определить напряженность Е поля и па¬дение потенциала в каждом из слоев. 348. Плоский конденсатор с площадью пластин S=200 см2 каж¬дая заряжен до разности потенциалов U=2 кВ. Расстояние между пластинами d=2 см. Диэлектрик — стекло. Определить энергию W поля конденсатора и плотность w энергии поля. 349. Катушка и амперметр соединены последовательно и под¬ключены к источнику тока. К клеммам катушки присоединен вольт¬метр с сопротивлением r=4 кОм. Амперметр показывает силу тока I=0,3 А, вольтметр — напряжение U=120 В. Определить сопро¬тивление R катушки. Определить относительную погрешность ε, которая будет допущена при измерении сопротивления, если пренебречь силой тока, текущего через вольтметр. 350. Э. д. с. батареи ε=80 В, внутреннее сопротивление Ri =5 Ом. Внешняя цепь потребляет мощность Р=100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внеш¬няя цепь, и ее сопротивление R. 351. От батареи, э. д. с. которой ε=600 В, требуется передать энергию на расстояние l=1 км. Потребляемая мощность Р=5 кВт. Найти минимальные потери мощности в сети, если диаметр медных подводящих проводов d=0,5 см. 352. Определить число электронов, проходящих за время t=1 с через поперечное сечение площадью S=1 мм2 железной проволоки длиной l=20 м при напряжении на ее концах U= 16 В. 353. Э.д.с. батареи ε=24 B. Наибольшая сила тока, которую может дать батарея, Iшах=10 А. Определить максимальную мощ¬ность Рmах, которая может выделяться во внешней цепи. 354. При внешнем сопротивлении R1= 8 Ом сила тока в цепи I1=0,8 А, при сопротивлении R2=15 Ом сила тока I2=0,5 А. Оп¬ределить силу тока Iк.з. короткого замыкания источника э. д. с. 355. В сеть с напряжением U=100 В подключили катушку с сопротивлением R1 =2 кОм и вольтметр, соединенные последова¬тельно. Показание вольтметра U1=80 В. Когда катушку заменили другой, вольтметр показал U2=60 В. Определить сопротивление R2 другой катушки. 356. Э. д. с. батареи ε = 12 В. При силе тока I=4 А к. п. д. ба¬тареи η=0,6, Определить внутреннее сопротивление Ri батареи. 367. За время t=20 с при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R =5 Ом выделилось количество теплоты Q=4 кДж. Определить ско¬рость нарастания силы тока, если cопротивление проводника R=5 Ом, 358. Сила тока в проводнике изменяется со( временем по закону I=I0*e-αt, где Iо=20 А, α=102 с-1. Определить количество теплоты, выделившееся в проводнике за время t= 10-2 с. 359. Сила тока в проводнике сопротивлением R = 10 Ом за вре¬мя t=50 с равномерно нарастает от I1=5 А до I2=10 А. Опреде¬лить количество теплоты Q, выделившееся за это время в провод¬нике. 360. В проводнике за время t=10 с при равномерном возраста¬нии силы тока от I1= l А до I2=2 А выделилось количество теплоты Q=5 кДж. Найти сопротивление R проводника. 361. Сила тока в проводнике изменяется со временем по закону I=I0sin wt. Найти заряд Q, протекающий через поперечное сече¬ние проводника за время t, равное половине периода Т., если на¬чальная сила тока Iо=10 А, циклическая частота w=50π с-1. 362. За время t=10 с при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике выделилось количе¬ство теплоты Q=40 кДж. Определить среднюю силу тока <I> в проводнике, если его сопротивление R=25 Ом. 363. За время t=8 с при равномерно возраставшей силе тока в проводнике сопротивлением R=8 Ом выделилось количество теп¬лоты Q=500 Дж. Определить заряд q, протекший в проводнике, если сила тока в момент времени t=0 равна нулю. 364. Определить количество теплоты Q, выделившееся за время t=10 с в проводнике сопротивлением R=10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I1= 10 А до I2=0, 365. Резистор сопротивлением R=6 Ом подключен к двум па¬раллельно соединенным источникам тока с э. д. с. ε1 = 2,2 В и ε 2 =2,4 В и внутренними сопротивлениями R1 =0,8 Ом и R2=0,2 Ом. Определить силу тока I в этом резисторе и напряжение U на зажи¬мах второго источника тока. 366. Определить силу тока в каждом элементе и напряжение на зажимах реостата (рис.20), если ε1 =12 В, R1 = 1 Ом, ε2=6 В, R2 =1,5 Ом и R = 20 Ом. 367. Определить силы токов на всех участках электрической цепи (рис. 21), если ε1 = 8 В, ε2=12 В, R1 = l Ом, R2=1 Ом, R3=4 Ом, R4=2 Ом. Внутренними сопротивлениями источников тока пренебречь. 368. Два источника тока с электродвижущими силами ε1= 12 В и ε2=8 В и внутренними сопротивлениями R1 = 4 Ом и R2=2 Ом, а также проводник сопротивлением R=20 Ом соединены, как показано на рис, 22. Определить силы тока в реостате и источ¬никах тока. 369. Две батареи (б,= 12 В, #,=2 Ом, <S2=24 В, #2=6 Ом) и проводник сопротивлением #=16 Ом соединены, как показано на рис. 22. Определить силу тока в батареях и реостате. 370. Три резистора с сопротивлениями #,-=6 Ом, #2=3 Ом и #з=2 Ом, а также источник тока <gi=2,2 В соединены, как пока¬зано на рис. 23. Определить э. д. с. <§ источника, который надо подключить в цепь между точками А и В так, чтобы в проводнике со¬противлением #3 шел ток силой /3=1 А в направлении, указанном стрелкой. Внутренними сопротивлениями источников тока прене¬бречь -
Рис. 23 . 371. Определить разность потенциалов между точками А и В (рис. 23), если <§! = 8 В, <§2=6 В, #,=4 Ом, #2=6 Ом/ #3=8 Ом. Внутренними сопротивлениями источников тока пренебречь. 372. Определить силу тока /з в проводнике сопротивлением #з (рис. 24) и напряжением t/з на концах этого проводни¬ка, если <?| = 6 В, <?2=8 В #i=4 Ом, #2=8 Ом, #3=6 Ом! Внутренними сопротивлениями источников тока пренебречь. 373. Объем газа, заключенного между электродами ионизационной камеры, V=Q,8 л. Газ ионизируется рентгеновским излу¬чением. Сила тока насыщения /нас = 6 нА. Сколько пар ионов обра¬зуется за время f=l с в объеме 1^ = 1 см3 газа? Заряд каждого иона равен элементарному заряду. - и ---- Q_J ---- Г— L— Ь П 1з - . у * — В Рис. 24
374. На расстоянии d=I см одна от другой расположены две пластины площадью 5=400 см2 каждая. Водород между пластинами ионизируют рентгеновским излучением. При напряжении 1/=В между пластинами идет далекий от насыщения ток силой ? мкА. Определить концентрацию п ионов одного знака между пластинами. Заряд каждого иона считать равным элементарному заряду. 375. Посередине между, электродами ионизационной камеры пролетела а-частица, двигаясь параллельнб электродам, и образо¬вала на своем пути цепочку ионов. Спустя какое время т после про¬лета а-частицы ионы дойдут до электродов, если расстояние между электродами d=2 см, разность потенциалов [/=6 кВ и подвижность Ь ионов обоих знаков в среднем равна 1,5 см2/(В-с)? 3.76. Найти сопротивление трубки длиной г=0,5 м и площадью поперечного сечения 5=5 мм2, если она наполнена азотом, иони¬зированным так-, что в объеме V=l см3 его находится при равно¬весии п=108 пар ионов. Ионы одновалентны. 377. К электродам разрядной трубки, содержащей водород, приложена разность потенциалов [/=10 В, Расстояние d между электродами равно 25 см. Ионизатор создает в объеме U=l см3 водорода и=107 пар ионов в секунду. Найти плотность тока ;' в трубке. Определить также, какая часть силы тока создается дви¬жением положительных ионов. 378. Воздух ионизируется рентгеновскими излучениями. .Опре¬делить удельную проводимость у воздуха, если в объеме V=\ .см3 газа находится в условиях равновесия я=108 пар ионов. 379. Азот между плоскими электродами ионизационной камеры ионизируется рентгеновским излучением. Сила тока, текущего через камеру, /=1,5 мкА. Площадь каждого электрода S = 200_ см2, рас¬стояние между ними d=l,5 см, разность потенциалов [/ = 150 В. Определить концентрацию п ионов между пластинами, если ток да¬лек от насыщения. Заряд, каждого иона равен элементарному за¬ряду. 380. Газ, заключенный в ионизационной камере между плоски¬ми пластинами, облучается рентгеновским излучением. Определить плотность тока насыщения /W, если ионизатор образует в объеме V=l см3 газа п=5-106 пар ионов в секунду. Принять, что каждый ион несет на себе элементарный заряд. Расстояние между пласти¬нами камеры d=2 см.
Заказать решение задач по физике
MP3 - симфония формул и логики
|
|
| |
bovali | Дата: Четверг, 27.10.2011, 09:58 | Сообщение # 2 |
Admin
Группа: Администраторы
Сообщений: 908
Статус: Offline
| КОНТРОЛЬНАЯ РАБОТА 4. 401. Проволочный виток радиусом R = 25 см расположен в плоскости магнитного меридиана. В центре установлена небольшая магнитная стрелка, способная вращаться вокруг вертикальной оси. На какой угол а отклонится стрелка, если по витку пустить ток си¬лой I=15 А? Горизонтальную составляющую индукции земного магнитного поля принять равной В= 20 мкТл. 402. Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол φ =30° с плоскостью магнитного меридиана. Радиус витка R=20 см. Определить угол а, на который повернется магнитная стрелка, если по проводнику пойдет ток силой I=25 А (дать два ответа). Гори¬зонтальную составляющую индукции земного магнитного поля при¬нять равной В=20 мкТл. 403. По двум длинным параллельным проводам, расстояние между которыми d=5 см, текут одинаковые токи I=10 А. Опреде¬лить индукцию В и напряженность Н магнитного поля в точке, уда¬ленной от каждого провода на расстояние г=5 см, если токи текут: а) в одинаковом, б) в противоположных направлениях. 404. Два бесконечно длинных прямых проводника скрещены под прямым углом. По проводникам текут токи силой I1=100 А и I2= 50 А. Расстояние между проводниками d=20 см. Определить ин¬дукцию В магнитного поля в точке, лежащей на середине общего перпендикуляра к проводникам. 405. Ток силой I=50 А течет по проводнику, согнутому под прямым углом. Найти напряженность Н магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии b=20 см. Считать, что оба конца проводника находятся очень далеко от вершины угла. 406. По проводнику, изогнутому в виде окружности, течет ток. Напряженность магнитного поля в центре окружности H1=50 А/м. Не изменяя силы тока в проводнике, ему придали форму квадрата. Определить напряженность H2 магнитного поля в точке пересече¬ния диагоналей этого квадрата. 407. По контуру в виде равностороннего треугольника течет ток силой I=50 А. Сторона треугольника а=20 см. Определить магнит¬ную индукцию В в точке пересечения высот. 408. По проводнику, согнутому в виде прямоугольника со сто¬ронами a = 8 см и b = 12 см, течет ток силой I=50 А. Определить на¬пряженность Н и индукцию В магнитного поля в точке пересечения диагоналей прямоугольника. 409. По двум параллельным проводам длиной l=3 м каж¬дый текут одинаковые токи силой I=500 А. Расстояние между про¬водниками d=10 см. Определить силу F взаимодействия провод¬ников. 410. По трем параллельным прямым проводам, находящимся на одинаковом расстоянии d=20 см друг от друга, текут токи одина¬ковой силы I=400 А. В двух проводах направления токов совпада¬ют. Вычислить для каждого из проводов отношение силы, действую¬щей на него, к его длине. 411. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи силой I=200 А. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоя¬нии, равном ее длине, 412. Прямой провод длиной l=40 см, по которому течет ток силой I=100 А, движется в однородном магнитном поле с индук¬цией В=0,5 Тл. Какую работу А совершат силы, действующие на провод со стороны поля, переместив его на расстояние s=40 см, если направление перемещения перпендикулярно линиям индукции и проводу? 413. Напряженность Н магнитного поля в центре круглого вит¬ка равна 500 А/м. Магнитный момент витка рm=6 А-м2. Вычислить силу тока I в витке и радиус R витка. 414. Короткая катушка площадью поперечного сечения S=250 см2, содержащая N=500 витков провода, по которому течет ток силой I=5 А, помещена в однородное магнитное поле напряжен¬ностью H=1000 А/м. Найти: 1) магнитный момент рm катушки; 2) вращающий момент М, действующий на катушку, если ось ка¬тушки составляет угол φ=30° с линиями поля. 415. Виток диаметром d=10 см может вращаться около верти¬кальной оси, совпадающей с одним из диаметров витка. Виток уста¬новили в плоскости магнитного меридиана и пустили по нему ток силой I=40 А. Какой вращающий момент М нужно приложить к вит¬ку, чтобы удержать его в начальном положении? Горизонтальную составляющую индукции магнитного поля Земли принять равной Вг=200 мкТл. 416. Виток радиусом R=20 см, по которому течет ток силой I=50 А, свободно установился в однородном магнитном поле на¬пряженностью H=103 А/м. Виток повернули относительно диаметра на угол φ =30°. Определить совершенную работу A. 417. На оси плоского контура с током находится другой такой же контур. Модули магнитных моментов контуров одинаковы (pm1 = pm2 =А*м2). 'Вычислить механический момент М, действующий на второй контур, если его магнитный момент перпендикулярен, маг¬нитному моменту первого контура. Расстояние r между контурами равно 100 см. Размеры контуров малы по сравнению с. расстоянием между ними. 418. Тонкий провод в виде кольца массой m=5 г свободно под¬вешен на неупругой нити в однородном магнитном поле. По кольцу течет ток силой I=6 А. Период Т малых крутильных колебаний от¬носительно вертикальной оси равен 2,2 с. Найти индукцию В маг¬нитного поля. 419. Из тонкой проволоки массой т=4 г изготовлена квадрат¬ная рамка. Рамка свободно подвешена на неупругой нити и по ней пропущен ток силой I=8 А. Определить частоту v малых колебаний рамки в магнитном поле с индукцией B=20 мТл. 420. Тонкое кольцо радиусом R=20 см несет равномерно распре¬деленный заряд Q=40 нКл. Кольцо вращается относительно оси, сов¬падающей с одним из диаметров кольца, с частотой п=20 с-1. Опре¬делить: 1) магнитный момент рm, обусловленный вращением заря¬женного кольца; 2) отношение магнитного момента к моменту им¬пульса pm/L, если кольцо имеет массу m=10 г. 421. Диск радиусом R=5 см несет равномерно распределенный по поверхности, заряд Q=0,l мкКл. Диск равномерно вращается от¬носительно оси, проходящей через его центр и перпендикулярной плоскости диска. Частота вращения п=50 с-1. Определить: 1) маг¬нитный момент рm кругового тока, создаваемого диском; 2) отношение магнитного момента к моменту импульса рm/L, если масса дис¬ка т= 100 г. 422. По тонкому стержню длиной l=40 см равномерно распре¬делен заряд Q=500 нКл. Стержень приведен во вращение с посто¬янной угловой скоростью ω=20 рад/с относительно оси, перпенди¬кулярной стержню и проходящей через его середину. Определить: 1) магнитный момент рm, обусловленный вращением заряженногo стержня; 2) отношение магнитного момента к моменту импульсa рm/L, если стержень имеет массу m=10 г. 423. Электрон в атоме водорода движется вокруг ядра по кру¬говой орбите некоторого радиуса. Найти отношение магнитного момента эквивалентного кругового тока к моменту импульса орбиталь¬ного движения электрона pm/L. Заряд электрона и его массу считать известными. Указать на чертеже направление векторов рm и L. 424. Электрон в невозбужденном атоме водорода движется во¬круг ядра по окружности радиусом R=0,53*10-8 см. Вычислить маг¬нитный момент рm эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в маг¬нитное поле с индукцией В=0,4 Тл, направленной параллельно плоскости орбиты электрона. 425. Частица, несущая один элементарный заряд, влетела в од¬нородное магнитное поле с индукцией В=0,2 Тл под углом α=30° к направлению линий индукции. Определить силу Лоренца Fл если скорость частицы v =10,5 м/с. 426. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией В=0,01 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если радиус траектории частицы равен R=0,5 мм. 427. Электрон движется в однородном магнитном поле перпен¬дикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если индукция поля В=0,2 Тл, а радиус кривизны траектории R=0,2 см. 428. Заряженная частица с кинетической энергией Т=2 кэВ движется в однородном магнитном поле по окружности радиусом R=4 мм. Определить силу Лоренца Fл, действующую на частицу со стороны поля. 429. Электрон движется по окружности в однородном магнит¬ном поле с напряженностью H=5*103 А/м. Определить частоту об¬ращения п электрона. 430. Электрон движется в магнитном поле с индукцией В = 4 мТл no окружности радиусом R=0,8 см. Какова кинетическая энергия Т электрона? 431. Прогон влетел в однородное магнитное поле под углом α=60° к направлению линий поля и движется по спирали, радиус которой R=2,5 см. Индукция магнитного поля В=0,05 Тл. Найти кинетическую энергию Т протона. 432. Протон и α-частица, ускоренные одинаковой разностью по¬тенциалов, влетают в однородное магнитное поле. Во сколько раз ра¬диус R1 кривизны траектории протона больше радиуса R2 кривизны траектории α-частицы? 433. Два иона с одинаковыми зарядами, пройдя одну и ту же ускоряющую разность потенциалов, влетели в однородное магнитное поле перпендикулярно линиям индукции. Один ион, масса которого m1 = 12 а. е. м., описал дугу окружности радиусом R1 = 2 см. Определить массу m2 (в а. е. м.) другого иона, который описал дугу ок¬ружности радиусом R2=2,31 см. 434. Протон движется по окружности в однородном магнитном поле (В=2 Тл). Определить силу эквивалентного кругового тока I, создаваемого движением протона. 435. Электрон движется в однородном магнитном поле с ин¬дукцией B=10 мТл по винтовой линии, радиус которой R=1,5 см и шаг h=10 см. Определить период Т обращения электрона и его ско¬рость v. 436. В однородном магнитном поле с индукцией В=2 Тл движет¬ся α-частица. Траектория ее движения представляет собой винтовую линию с радиусом R=1 см и шагом h=6 см. Определить кинетиче¬скую энергию Т протона. 437. Перпендикулярно магнитному полю (Н=1 кА/м) возбуж¬дено электрическое поле (E=200 В/см). Перпендикулярно полям движется, не отклоняясь от прямолинейной траектории, заряженная частица. Определить скорость v частицы. 438. Заряженная частица прошла ускоряющую разность потен¬циалов и влетела в скрещенные под прямым, углом электрическое (E=400 В/м) и магнитное (В=0,2 Тл) поля. Определить ускоряющую разность потенциалов U, если, 'двигаясь перпендикулярно по¬лям, частица не испытывает отклонений от прямолинейной траектории. Отношение заряда к массе частицы е/m=9,64*107 Кл/кг. 439. Плоский конденсатор, между пластинами которого создано электрическое поле (E=100 В/м), помещен в магнитное поле так, что силовые линии полей взаимно перпендикулярны. Какова должна быть индукция В магнитного поля, чтобы электрон с начальной энер¬гией Т= 4 кэВ, влетевший в пространство между пластинами конден¬сатора перпендикулярно силовым линиям магнитного поля, не изме¬нил направления скорости? 440. Перпендикулярно однородному магнитному полю (В= I мТл) возбуждено однородное электрическое поле (E=1 кВ/м), Перпендикулярно полям влетает α-частица со скоростью v=1 Мм/с. Определить нормальное ап и тангенциальное аτ ускорения α-частицы в момент вхождения ее в поле. 441. Плоский контур площадью S=20 см2 находится в однород¬ном магнитном поле с индукцией В=0,03 Тл. Определить магнитный поток Ф, пронизывающий контур, если плоскость его составляет угол φ=60° с направлением линий индукций. 442. Магнитный поток Ф сквозь сечение соленоида равен 50 мкВб. Длина соленоида l=50 см. Найти магнитный момент pm соленоида, если его витки плотно прилегают друг к другу. 443. В средней части соленоида, содержащего п=8 витков/см, помещен круговой виток диаметром d=4 см. Плоскость витка рас¬положена под углом φ = 60° к оси соленоида. Определить магнитный поток Ф, пронизывающий виток, если по обмотке соленоида течет ток силой I= 1 А. 444. На длинный картонный каркас диаметром d=5 см уложе¬на однослойная обмотка (виток к витку) из проволоки диаметром d=0,2 мм. Определить магнитный поток Ф, создаваемый таким соленоидом при силе тока I=0,5 А. 445. Квадратный контур со стороной а=10 см, в котором течет ток силой I = 6 А, находится в магнитном поле с индукцией В = 0,8 Тл под углом α=50° к линиям индукции. Какую работу А нужно совершить, чтобы при неизменной силе тока в контуре изме¬нить его форму на окружность? 446. Плоский контур с током силой I=5 А свободно установился в однородном магнитном поле с индукцией В=0,4 Тл. Площадь кон¬тура S=200 см2. Поддерживая ток в контуре неизменным, его по¬вернули относительно оси, лежащей в плоскости контура, на угол α=40°. Определить совершенную при этом работу A. 447. Виток, в котором поддерживается постоянная сила тока I=60 А, свободно установился в однородном магнитном поле (В =20 мТл). Диаметр витка d=10 см. Какую работу А нужно совер¬шить для того, чтобы повернуть виток относительно оси, совпадаю¬щей с диаметром, на угол α=π/3? 448. В однородном магнитном поле перпендикулярно линиям ин¬дукции расположен плоский контур площадью S=100 см2. Поддер¬живая в контуре постоянную силу тока I=50 А, его переместили из поля в область пространства, где поле отсутствует. Определить ин¬дукцию В магнитного поля, если при перемещении контура была со¬вершена работа A = 0,4 Дж. 449. Рамка площадью S=100 см2 равномерно вращается с час¬тотой n=5 с-1 относительно оси, лежащей в плоскости рамки и пер¬пендикулярной линиям индукции однородного магнитного поля (В=0,5 Тл). Определить среднее значение э. д. с. индукции <εi> за время, в течение которого магнитный поток, пронизывающий рам¬ку, изменится от нуля до максимального значения. 450. Рамка, содержащая N=1000 витков площадью S=100 см2, равномерно вращается с частотой n=10 с-1 в магнитном поле на¬пряженностью H=104 А/м. Ось врйщения лежит в плоскости рамки и перпендикулярна линиям напряженности. Определить максималь¬ную э. д. с. индукции εmax, возникающую в рамке. 451. В однородном магнитном поле (В=0,1 Тл) равномерно с частотой n=5 с-1 вращается стержень длиной l=50 см так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить ин¬дуцируемую на концах стержня разность потенциалов U. 452. В однородном магнитном поле с индукцией В=0,5 Тл вра¬щается с частотой n=10 с-1 стержень длиной l=20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня, перпендикулярно его оси. Определить разность потенциа¬лов U на концах стержня. 453. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд Q=50 мкКл. Определить изменение магнитного потока ∆Ф через кольцо, если сопротивление цепи гальванометра R=10 Ом. 454. Тонкий медный провод массой т=5 г согнут в виде квад¬рата и концы его замкнуты. Квадрат помещен в однородное магнит¬ное поле (В=0,2 Тл) так, что его плоскость перпендикулярна лини¬ям поля. Определить заряд Q, который потечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию. 455. Рамка из провода сопротивлением R=0,04 Ом равномерно вращается в однородном магнитном поле (В=0,6 Тл). Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Пло¬щадь рамки S=200 см2. Определить заряд Q, который потечет по рамке при изменении угла между нормалью к рамке и линиями ин¬дукции: 1) от 0 до 45°; 2) от 45 до 90°. 457. Соленоид сечением S=10 см2 содержит N=1000 витков. Индукция В магнитного поля внутри соленоида при силе тока I=5 А равна 0,1 Тл. Определить индуктивность L соленоида. 458. На картонный каркас длиной l=0,8 м и диаметром D=4 см намотан в один слой провод диаметром d=0,25 мм так, что витки плотно прилегают друг к другу. Вычислить индуктивность L полу¬чившегося соленоида. 459. Катушка, намотанная на немагнитный цилиндрический кар¬кас, имеет N=250 витков и индуктивность L1=36 мГн. Чтобы увели¬чить индуктивность катушки до L2=100 мГн, обмотку катушки сня¬ли и заменили обмоткой из более тонкой проволоки с таким расче¬том, чтобы длина катушки осталась прежней. Сколько витков ока¬залось в катушке после перемотки? 460. Индуктивность соленоида, намотанного в один слой на не¬магнитный каркас, L = 0,5 мГн. Длина соленоида l=0,6 м, диаметр D=2 см. Определить отношение п числа витков соленоида к его длине. 461. Соленоид содержит N=600 витков. При силе тока I=10 А магнитный поток Ф=80 мкВб. Определить индуктивность L соле¬ноида. 462. Соленоид имеет стальной полностью размагниченный сер¬дечник объемом V=500 см3. Напряженность H магнитного поля со¬леноида при силе тока I=0,6 А равна 1000 А/м. Определить индук¬тивность L соленоида (рис. 31). 463. Обмотка соленоида с железным сердечником содержит N=600 витков. Длина сердечника l=40 см. Как и во сколько раз изменится индуктивность L соленоида, если сила тока, протекающе¬го по обмотке, возрастает от I1=0,2 А до I2=l А (рис. 31)? 464. На железный полностью размагниченный сердечник диа¬метром D=5 см и длиной l=80 см намотано в один слой N=240 вит¬ков провода. Вычислить индуктивность L получившегося соленоида при силе тока I=0,6 А (рис. 31). 465. Силу тока в катушке равномерно увеличивают с помощью реостата на ∆I=0,6 А в секунду. Найти среднее значение э. д. с, <εi> самоиндукции, если индуктивность катушки L=5 мГн. 466. Соленоид содержит N=800 витков. Сечение сердечника (из немагнитного материала) S=10 см2. По обмотке течет ток, создаю¬щий поле с индукцией В=8 мТл. Определить среднее значение э. д. с, < εs > самоиндукции, которая возникает на зажимах соленоида, ес¬ли сила тока уменьшается практически до нуля за время ∆t=0,8 мс. 467. По катушке индуктивностью L=8 мкГн течет ток силой I=6 А. При выключении тока его сила изменяется практически до нуля за время ∆t =5 мс. Определить среднее значение э. д. с. < εs > самоиндукции, возникающей в контуре. 468. В электрической цепи, содержащей сопротивление r=20 Ом и индуктивность L=0,06 Гн, течет ток силой I=20 А. Определить силу тока в цепи через ∆t =0,2 мс после ее размыкания. 469. По замкнутой цепи с сопротивлением R=20 Ом течет ток. Через время t=8 мс после размыкания цепи сила тока в ней умень¬шилась в 2Q раз. Определить индуктивность L цепи. 470. Цепь состоит из катушки индуктивностью L=0,1 Гн и ис¬точника тока. Источник тока отключили, не разрывая цепи. Время, через которое сила тока уменьшится до 0,001 первоначального значения, равно t=0,07 с. Определить сопротивление R катушки. 471. Источник тока замкнули на катушку сопротивлением R= 10 Ом и индуктивностью L=0,2 Гн. Через какое время сила тока в цепи достигнет 50 % максимального значения?
НЛ1М 1000 1500 2000 2500 3000 Рис. 31
472. Источник тока замкнули на катушку сопротивлением R =20 Ом. Через время t=0,1 с сила тока I замыкания достигла 0,95 предельного значения. Определить индуктивность L катушки. 473. В соленоиде сечением S=5 см2 создан магнитный поток Ф=20 мкВб. Определить объемную плотность w энергии магнитного поля соленоида. Сердечник отсутствует. Магнитное поле во всем объ¬еме соленоида считать однородным. 474. Магнитный поток Ф в соленоиде, содержащем N=1000 вит¬ков, равен 0,2 мВб. Определить энергию W магнитного поля соле¬ноида, если сила тока, протекающего по виткам соленоида, I=1 А. Сердечник отсутствует. Магнитное поле во всем объеме соленоида считать однородным. 475. Диаметр тороида (по средней линии) D=50 см. Тороид со¬держит N = 2000 витков и имеет площадь сечения S=20 см2. Вычис¬лить энергию W магнитного поля тороида при силе тока I=5 А. Считать магнитное поле тороида однородным. Сердечник выполнен из немагнитного материала. 476. По проводнику, изогнутому в виде кольца радиусом R = 20 см, содержащему N=500 витков, течет ток силой I=1 А. Оп¬ределить объемную плотность w энергии магнитного поля в центре кольца. 477. При какой силе тока I в прямолинейном проводе беско¬нечней длины на расстоянии r=5 см от него объемная плотность энергии магнитного поля будет w=1 мДж/м3? 478. Обмотка тороида имеет N=10 витков на каждый сантиметр длины (по средней линии тороида). Вычислить объемную плотность энергии w магнитного поля при силе тока I=10 А. Сердечник вы¬полнен из немагнитного материала, и магнитное поле во всем объ¬еме однородно. 479. Обмотка соленоида содержит п=20 витков на каждый сан¬тиметр длины. При какой силе тока I объемная плотность энергии магнитного поля будет w=0,l Дж/м3? Сердечник выполнен из не¬магнитного материала, и магнитное поле во всем объеме однорoдно. 480. Соленоид имеет длину l=0,6 м и сечение S=10 см2. При не¬которой силе тока, протекающего по обмотке, в соленоиде создается магнитный поток Ф=0,1 мВб. Чему равна энергия W магнитного по¬ля соленоида? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.
MP3 - симфония формул и логики
|
|
| |
bovali | Дата: Четверг, 27.10.2011, 09:58 | Сообщение # 3 |
Admin
Группа: Администраторы
Сообщений: 908
Статус: Offline
| Контрольная работа 5.
501. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ= 0,6 мкм равен 0,82 мм. Радиус кривизны линзы R = 0,5 м. 502. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны λ = 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n = 1,4. 503. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1 см укладывается N = 10 темных интерференционных полос. Длина волны λ = 0,7 мкм. 504. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ = 500 нм. Найти радиус R линзы, если радиус четвертого кольца Ньютона в отраженном свете r4 = 2 мм. 505. На тонкую глицериновую пленку толщиной d = 1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн λ лучей видимого участка спектра (0,4≤λ≤ 0,8 мкм), которые будут ослаблены в результате интерференции. 506. На стеклянную пластинку нанесен тонкий слой прозрачного вещества с показателем преломления n = 1,3. Пластика освещена параллельным пучком монохроматического света с длиной волны λ = 640 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость? 507. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ = 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,6. 508. Плосковыпуклая линза с фокусным расстоянием f = 1 мм лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5 = 1,1 мм. Определить длину световой волны λ. 509. Постоянная дифракционной решетки в n = 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами. 510. Расстояние между штрихами дифракционной решетки d = 4 мкм. На решетку падает нормально свет с длиной волны λ = 0,58 мкм. Максимум какого наибольшего порядка дает эта решетка? 511. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1= 589,0 нм и λ2= 589,6 нм? Какова длина l такой решетки, если постоянная решетки d = 5 мкм? 512. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n = 4,6 раза больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически возможно наблюдать в данном случае. 513. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ = 780 нм) спектра третьего порядка? 514. На дифракционную решетку, содержащую n = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L= 1,2 м. Границы видимого спектра: λкр = 780 нм, λф = 400 нм. 515. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом α = 650 к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения. 516. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ = 600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ = 200. Определить ширину а щели. 517. Пучок света последовательно проходит через два николя, плоскости пропускания которых образуют между собой угол φ = 400 . Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз пучок света, выходящий из второго николя, ослаблен по сравнению с пучком, падающим на первый николь. 518. Угол падения i1 луча на поверхность стекла равен 600 . При этом отраженный пучок света оказался максимально поляризованным. Определить угол i2 преломления луча. 519. Угол α между плоскостями пропускания поляроидов равен 500 . Естественный свет, проходя через такую систему, ослабляется в n = 4 раза. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах. 520. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле i1 падения отраженный пучок света максимально поляризован? 521. Пластинку кварца толщиной d= 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ = 530 . Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным? 522. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками. 523. Кварцевую пластику поместили между скрещенными николями. При какой наименьшей толщине dmin кварцевой пластины поле зрения между николями будет максимально просветлено. Постоянная вращения α кварца равна 27 град/мм. 524. При прохождении света через трубку длиной l 1 = 20 см, содержащую раствор сахара с концентрацией С 1 = 10%, плоскость поляризации света повернулась на угол φ1 = 13,3 0. В другом растворе сахара налитом в трубку длиной l2 = 15 см, плоскость поляризации повернулась на угол φ2=5,2 0. Определить концентрацию С второго раствора. 525. Частица движется со скоростью v = 1/3 с (где с – скорость света в вакууме). Какую долю энергии покоя составляет кинетическая энергия частицы? 526. Протон с кинетической энергией Т = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс протона. 527. При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n = 3 раза больше массы покоя? 528. Определить отношение релятивистского импульса р электрона с кинетической энергией Т = 1,53 МэВ к комптоновскому импульсу m0c электрона. 529. Скорость электрона v= 0,8с (где с – скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона. 530. Протон имеет импульс р = 469 МэВ/с. Какую кинетическю энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? 531. во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т = 1,53 ТэВ, больше массы покоя. m0 ? 532. Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя? 533. Вычислить истинную температура Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Трад = 2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна аT = 0,35. 534. Абсолютно черное тело имеет температуру Т1 = 500 К. Какова будет температура Т2 тела, если в результате нагревания поток излучения увеличится в n = 5 раз? 535. Температура абсолютно черного тела Т = 2 кК. Определить длину волны λm , на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (излучательности) (r λ, T) max для этой длины волны. 536. Определить температуру Т и энергетическую светимость (излучательность) Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны λm = 600 нм. 537. Из смотрового окошечка печи излучается поток Фe = 4 кДж/мин. Определить температуру Т печи, если площадь окошечка S = 8 см². 538. Поток излучения абсолютно черного тела Фe = 10 кВт, максимум энергии излучения приходится на длину волны λ m = 0,5 мкм. Определить площадь S излучающей поверхности. 539. Как и во сколько раз изменится поток излучения абсолютно черного тела. Если максимум энергии излучения переместится с красной границы видимого спектра (λm1 = 780 нм) на фиолетовую (λm2 = 390 нм)? 540. Определить поглощательную способность аT серого тела, для которого температура, измеренная радиационным пирометром, Трад = 1,4 кК, тогда как истинная температура Т тела равна 3,2 кК. 541. Красная граница фотоэффекта для цинка λ0 = 310 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны λ = 200 нм. 542. На пов6рхность калия падает свет с длиной волны λ = 150 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов. 543. Фотон с энергией ε = 10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин. 544. На фотоэлемент с катодом из лития падает свет с длиной волны λ =200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin , которую нужно приложить к фотоэлементу, чтобы прекратить фототок. 545. Какова должна быть длина волны γ-излучения, падающего на платиновую пластину, если максимальная скорость фотоэлектронов vmax = 3 Mм/с? 546. На металлическую пластину направлен пучок ультрафиолетового излучения (λ = 0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов U min = 0,96 В. Определить работу выхода А электронов из металла. 547. На поверхность металла падает монохроматический свет с длиной волны λ = 0,1 мкм. Красная граница фотоэффекта λ0 = 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии? 548. На металл падает рентгеновское излучение с длиной волны λ = 1 нм. Пренебрегая работой выхода, определить максимальную скорость vmax фотоэлектронов. 549. Фотон при эффекте Комптона на свободном электроне был рассеян на угол φ=π/2. Определить импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была ε1 = 0,51 МэВ. 550. Рентгеновское излучение (λ = 1 нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны λmax рентгеновского излучения в рассеяном пучке. 551. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол φ = π/2? Энергия фотона до рассеяния ε1= 0,51 МэВ. 552. Определить максимальное изменение длины волны (∆λ)max при комптоновском рассеянии света на свободных электронах и свободных протонах. 553. Фотон с длиной волны λ1 = 15 пм рассеялся на свободном электроне. Длина волны рассеяного фотона λ2 = 16 пм. Определить угол φ рассеяния. 554. Фотон с энергией ε1 = 0,51 мэВ был рассеян при эффекте Комптона на свободном электроне на угол φ = 180 0 . Определить кинетическую энергию Т электрона отдачи. 555. В результате эффекта Комптона фотон с энергией ε1 = 1,02 МэВ рассеян на свободных электронах на угол φ = 150 0 определить энергию ε 2 рассеяного фотона. 556. Определить угол φ, на который был рассеян γ-квант с энергией ε1 =1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи Т = 0,51 МэВ. 557. Определить энергетическую освещенность (облученность) Еe зеркальной поверхности, если давление, производимое излучением р = 40 мкПа. Излучение падает нормально к поверхности. 558. Давление р света с длиной волны λ = 400 нм, падающего нормально на черную поверхность , равно 2 нПа. Определить число N фотонов, падающих за время t =10 c на площадь S = 1 мм2 этой поверхности. 559. Определить коэффициент отражения ( поверхности, если при энергетической освещенности Еe = 120 Вт/м2 давление р света на нее оказалось равным 0,5 мкПа. 560. Давление света, производимое на зеркальную поверхность, р = 4мПа. Определить концентрацию n0 фотонов близи поверхности, если длина волны света, падающего на поверхность, λ = 0,5 мкм. 561. На расстоянии r = 5 м от точечного монохроматического (λ = 0,5 мкм) изотропного источника расположена площадка (S = 8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения Р = 100 Вт. 562. Свет с длиной волны λ = 600 нм нормально падает на зеркальную поверхность и производит на нее давление р = 4 мкПа. Определить число N фотонов, падающих за время t = 10 с на площадь S = 1 мм2 этой поверхности. 563. На зеркальную поверхность площадью S = 6 см2 падает нормально поток излучения Фe = 0,8 Вт. Определить давление р и силу давления F света на эту поверхность. 564. Точечный источник монохроматического (λ = 1 нм) излучения находится в центре сферической зачерненной колбы радиусом R = 10 см. Определить световое давление р, производимое на внутреннюю поверхность колбы, если мощность источника Р = 1 кВт.
MP3 - симфония формул и логики
|
|
| |
bovali | Дата: Четверг, 27.10.2011, 09:59 | Сообщение # 4 |
Admin
Группа: Администраторы
Сообщений: 908
Статус: Offline
| Контрольная работа 6.
654. Найти плотность ρ кристалла неона, если известно, что решетка гранецентрированная кубическая. Постоянная решетки a =0,451 нм. 655. Барий имеет объемно-центрированную кубическую решетку. Плотность ρ кристалла бария равна 3,5*103 кг/м3. Определить параметр а решетки. 656. Алюминий имеет гранецентрированную кубическую решетку. Параметр решетки, а = 0,404 нм. Определить плотность алюминия. 657. Ванадий имеет объемно-центрированную кубическую решетку. Определить параметр а решетки и расстояние d между ближайшими соседними атомами. Плотность ρ ванадия считать известной. 658. Определить число z элементарных ячеек кристалла меди в единице объема (решетка гранецентрированная кубическая). Плотность ρ считать известной. 659. Расстояние d между ближайшими соседними атомами кристаллической решетки золота равно 0,288 нм. Определить параметр а решетки, если решетка гранецентрированная кубическая. 660. Никель имеет гранецентрированную кубическую решетку. Определить параметр а решетки и расстояние d между ближайшими соседними атомами. Плотность ρ никеля считать известной. 661. Определить теплоту Q, необходимую для нагревания кристалла калия массой m = 200 г от температуры T1 = 4 К до T2 = 5 К. Принять характеристическую температуру Дебая для калия ΘD = 100 К и считать условие T<< ΘD выполнимыми. 662. Пользуясь теорией теплоемкости Дебая, вычислить удельную теплоемкость суд алюминия при температуре T= ΘD. 663. Система, состоящая из N=1020 трехмерных квантовых осцилляров, находится при температуре T= ΘE (ΘE =250 К). Определить энергию Е системы. 664.Медный образец массой m=100 г находится при температуре T1=10 К. Определить теплоту Q, необходимую для нагревания образца до температуры T2 = 20 К. Можно принять характеристическую температуру ΘD для меди равной 300 К, а условие считать T << ΘD выполненным. 665. Используя квантовую теорию теплоемкости Эйнштейна, определить коэффициент упругости β связи атомов в кристалле алюминия. Принять для алюминия ΘE= 300 К. 666. Найти отношение средней энергии <εкв.> линейного одномерного осциллятора, вычисленной по квантовой теории, к энергии <εкл.> такого же осциллятора, вычисленной по классической теории. Вычисление произвести для двух температур: 1) Т = 0,1ΘE ; 2) Т = ΘE, где ΘE – характеристическая температура Эйнштейна. 667. Вычислить по теории Дебая теплоемкость С алмаза массой m = 1 г при температуре Т = ΘD. 668. Молярная теплоемкость Cm серебра при температуре Т = 20 К оказалась равной 1,65 Дж/(моль•К). Вычислить по значению теплоемкости характеристическую температуру ΘD. Условие Т<<ΘD считать выполненным. 669. Вычислить (по Дебаю) удельную теплоемкость хлористого натрия при температуре Т = ΘE /20. Условие Т <<ΘD считать выполненным. 670. Вычислить по Дебая теплоемкость цинка массой m = 100 г при температуре Т =10 К. Принять для цинка характеристическую температуру Дебая ΘD = 300 К и считать условие Т <<ΘD выполненным. 671. Определить долю свободных электронов в металле при температуре Т = 0 К, энергия ε которых заключены в интервале значений от 1/2 εmax до εmax. 672. Собственный полупроводник (германиевый) имеет при некоторой температуре удельное сопротивление ρ=0,5 Ом•м. Определить концентрацию n носителей тока, если подвижность электронов bn = 0,38 м2/ (В•с) и дырок bp = 0,18 м2/ (В•с). 673. Определить концентрацию свободных электронов в металле при температуре Т = 0 К, при которой уровень Ферми εF = 6 эВ. 674. Тонкая пластина из кремния шириной b = 2 см помещена перпендикулярно линиям индукции одного магнитного поля (В =0,5 Тл). При плотности тока j=2 мкА/мм2, направленной вдоль пластины, холловская разность потенциалов оказалось Uн=2,8 В. Определить концентрацию n носителей тока. 675. Определить максимальную скорость vmax электронов в металле при температуре Т= 0 К, если уровень Ферми εF = 5 эВ. 676. Полагая, что на каждый атом алюминия в кристалле приходится по три свободных электрона, определить максимальную энергию Emax электронов при температуре Т= 0 К. 677. Найти среднее значение кинетической энергии <εкин.> электронов в металле при температуре Т= 0 К, если уровень Ферми εF = 6 эВ. 678. Подвижность электронов и дырок в кремнии соответственно равна bn =1,5•103 см2/(В•с) и bp =5•102 см2/(В•с). Вычислить постоянную Холла RH для кремния, если удельное сопротивление кремния ρ = 6,2•102 Ом • м. 679. Удельное сопротивление кремния с примесями ρ = 10-2 Ом•м. Определить концентрацию np дырок и их подвижность bp. Принять, что полупроводник обладает только дырочной проводимостью и постоянная Холла RH = 4∙10-4 м3/Кл. 680. Концентрация n носителей в кремнии равна 5∙1010см-3, подвижность электронов bn = 0,15 м2 /(В•с) и дырок bp = 0,05 м2 /(В•с). Определить сопротивление кремниевого стержня длиной l=5 см и площадью сечения S = 2 мм2. 681. При температуре T1 =200 К и магнитной индукции B1 =0,5 Тл была достигнута определенная намагниченность парамагнетика. Определить магнитную индукцию B2, при которой сохранится та же намагниченность, если температуру повысить до T2= 400 К. 682. Молекула О2 имеет магнитный момент рm = 2,8 μB. Определить молекулярную парамагнитную восприимчивость χm газообразного кислорода. 683. Определить намагниченность Јнас при насыщении железа, если считать, что на каждый атом железа в среднем приходится N = 2,4 μB. 684. Определить намагниченность Јнас тела при насыщении, если магнитный момент каждого атома равен двум магнетонам Бора и концентрация атомов n = 1023 см-3. 685. Определить удельную парамагнитную восприимчивость χуд газообразного кислорода при нормальных условиях, если известно, что молекулы кислорода обладают магнитным моментом рm = 2,8 μB. 686. Вычислить среднее число магнетонов Бора, приходящихся на один атом железа, если при насыщении намагниченность железа Јнас =1,85∙106 А/м. 687. Электронная орбита прецессирует в однородном магнитном поле с круговой частотой ωL =108 c -1. Определить напряженность Н магнитного поля. 688. Магнитная восприимчивость марганца χ = 1,2∙10-4. Определить удельную магнитную восприимчивость χуд и молярную восприимчивость χm. 689. Вычислить частоту ωL ларморовой прецессии электронных оболочек атомов в магнитном поле (Н = 16 А/м). 690. При какой напряженности Н магнитного поля частота ωL ларморовой прецессии электронных оболочек в атоме достигает значения 109 c -1.
MP3 - симфония формул и логики
|
|
| |
|